2023 Western Canadian grasshopper populations and prospects for 2024

Agronomy Update 2024

James A. Tansey¹, Ross Weiss², and John Gavloski³ 1- Saskatchewan Ministry of Agriculture 2-Agriculture and Agri-Foods Canada (Retired) 3-Manitoba Agriculture

Agriculture et Agroalimentaire Canada Agriculture and Agri-Food Canada

Agriculture and Agri-Food Canada

Agriculture and Agri-Food Canada

-

Agriculture et Agroalimentaire Canada

Weiss and Vankosky (AAFC) 2023

Grasshopper 2023 Survey

*

© 2023 Government of Saskatchewan

Williams and Vankosky (AAFC) 2023

Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Canada

Species detected in surveys

- AB
 - NW Several species but Bruner's significant
 - South Fewer migratory than in 1980s. Two striped and clearwing prevalent
 - Data courtesy Dr. Dan Johnson
- SK
 - Two-striped dominant most locations
 - NE and NC Mostly two-striped but some pockets of Bruner's
 - Migratory pops restricted to south
 - Some pockets of Packard's reported near Saskatoon, Moosejaw
- MB
 - Two-striped dominant at most locations, with significant clearwing and migratory also reported as dominant in some locations
 - Katydids dominant at a few sites
 - Data courtesy Dr. John Gavloski

- Two-Striped Grasshopper, *Melanoplus bivittatus*
 - 26 40 mm (1.0 to 1.6 inches)
 - Two pale stripes extending from eyes to tip of forewings

Two-striped

Kurt Schaefer 2005

- Hind femur with black stripe
- Prefers lush habitat
 - Heavier textured soil zones
- Hosts: prefers lush foliage such as weed species found in marshes and roadside ditches
- Pest of alfalfa and other crops
- Will feed on cereals

- Two-Striped Grasshopper
 - Prevalent pest species in Saskatchewan
 - OW as eggs
 - Eggs start to hatch 8-10 d ahead of migratory grasshopper
 - Eggs concentrated in roadsides, ditches

- Migratory Grasshopper, *Melanoplus sanguinipes*
 - Sometimes confused with Bruner's grasshopper
 - Adults: 23-28 mm (0.9 to 1.1 inches)
 - Back dark grayish-brown tinged with red
 - Belly yellowish
 - Hind legs marked with two black bands
 - Forewings: spotted pattern
 - Hind tibia: red, but can be blue, or yellowish

- Migratory Grasshopper,
 - Omnivorous

- Prefers forbs, grasses, wheat, barley, and other crops
- Scavenges on ground litter, dead insects, and dried manure
- During outbreaks, this species consumes just about all plants including trees and ornamentals, and small grains at all growth stages
- Outbreaks
 - Behaviour changes at high densities: gregarious
 - Nymphs (later instars) may migrate in large groups 16 km/day (10 miles)
 - Adult swarms: 1938, 1000 km from SD to SK
 - Commercial pilots repot strikes at 3000 ft

- Migratory Grasshopper
 - Overwinter as eggs
 - Groups of 18 to 24 eggs laid in soil late summer: depth 2 cm
 - 250/ eggs female
 - Hatch May
 - Hatching starts along open south slopes, in fields and rangeland with little vegetative cover, and in sandy soils
 - Five nymphal instars in 35 -55 days

Adult – 23-28 mm $5^{th} - 20 \text{ mm}$ $4^{th} - 14 \text{ mm}$ $3^{rd} - 10 mm$ $2^{nd} - 7 mm$

1st – 5 mm

Photos – USDA APHIS

- Packard's Grasshopper, Melanoplus packardii
 - Gray to dark yellow
 - 27-32 mm (1.1 to 1.3 inches)

- Prefers open habitat, light textured soils
- Two light-coloured stripes extend from just behind the eyes
- Blue tibia on hind legs
- Greater pressure in N range
- Hosts: vegetables, small grains, legumes, thistles

- Packard's Grasshopper
 - OW as eggs
 - Hatch May/June
 - 5 nymphal instars

Pests

- Clear-winged grasshopper, Camnula pellucida
 - Primarily a grass feeder
 - Also called 'California migratory locust'
 - Yellow to brown, mottled forewings and transparent hindwings, light stripes that converge
 - Carinae (keels) on pronotum

Pests

- Clear-winged grasshopper,
 Camnula pellucida
 - OW as eggs
 - Nymphs in May/June
 - Hatchlings emerge in morning when 4th-12 mm temps rising rapidly, especially after evening shower

3rd – 8 mm

 $2^{nd} - 4.5 \text{ mm}$

Pests

- Slant-faced grasshoppers (multiple species)
 - Occasionally damaging
 - Usually found along the borders of marshes and in wet meadows
 - Some members of this group are also common in dry, grassy fields and pastures
 - Feed primarily on rangeland grasses and sedges

Non-pests

- Long antennae (not grasshoppers at all)
- 85 species grasshoppers in W Canada, most are harmless to agriculture
- Not a pest if...
 - Wings before late June
 - Brightly-coloured hind wings
 - Speckle-winged rangeland grasshopper
 - Carolina grasshopper/ road duster
 - Noisy flyers
 - Callers/chirpers

©2006 University of Colorado Museum of Natural History

2023

- Dry and very warm conditions in many regions
- Agricultural emergencies declared in 20 Saskatchewan RMs, 15 Alberta communities
- Drought and grasshoppers
- Very warm conditions in May
 - Early emergence of nymphs

Warm

Canadian Drought Monitor

Conditions as of August 31, 2023

Grasshopper populations and the weather

- Migratory GH
 - Olfert and Weiss 2006 and refs therein
 - Warm spring
 - Earlier hatch
 - Increased nymphal survival and increased fecundity
 - More rapid development of eggs, nymphs, and adults
 - Warm late summer, fall
 - Oviposition related to adult densities, timing of adult emergence and weather conditions

.

• Warm dry conditions promote embryonic development

Weiss and Vankosky (AAFC) 2023

Grasshopper Development

Temperature

- High late summer, fall temps speed embryonic development
- Diapause required before some can complete development
 - At 30°C, migratory and two-striped GHs reach diapause-ready stage in 15d (80% development)
 - Clearwing GH diapause earlier in embryonic development. Ready in 7d but only 50% developed
- Warm spring conditions break diapause complete embryonic development
- Hatch

Grasshopper Development and water

Moisture

- Migratory GH
 - Eggs must absorb water
 - Min soil moisture 13.5% necessary for complete development
 - Development halts if <13.5% until moisture increases
- Two striped GH
 - Embryo death if 2/3 moisture loss
- Clearwing GH
 - Moist soils help cold hardiness

Figure: Pfadt, Robert E. Field guide to common western grasshoppers. Vol. 912. Wyoming Agricultural Experiment Station, 1994.

Grasshopper Development and water

- Moisture
 - Migratory GH
 - Eggs must absorb water
 - Min soil moisture 13.5% necessary for complete development
 - Development halts if <13.5% until moisture increases
 - Two striped GH
 - Embryo death if 2/3 moisture loss
 - Clearwing GH
 - Moist soils help cold hardiness

Figure: Pfadt, Robert E. Field guide to common western grasshoppers. Vol. 912. Wyoming Agricultural Experiment Station, 1994.

Grasshopper Development and water

Moisture

- Migratory GH
 - Eggs must absorb water
 - Min soil moisture 13.5% necessary for complete development
 - Development halts if <13.5% until moisture increases
- Two striped GH
 - Embryo death if 2/3 moisture loss
- Clearwing GH
 - Moist soils help cold hardiness

Figure: Pfadt, Robert E. Field guide to common western grasshoppers. Vol. 912. Wyoming Agricultural Experiment Station, 1994.

Cold hardiness

- Migratory
 - Sig egg mortality at -15°C (Mukerji & Braun, 1988)
 - Snow cover protects
 - Snow-free site -15.9°C soil temp, below 20 cm of snow -5.2°C (Mukerji (1987)

.

More advanced development, more hardy

Cold hardiness - Clearwing

Days at low temperature

Percent hatch

Nymphs and high temperatures

- Clearwing
 - Very warm soil surface temperatures cause difficulty in moulting, contribute to nymph mortality. Riegert, 1958
- Migratory
 - 50% nymph mortality with two consecutive days of +35°C (Pickford 1966)
 - Upper limit for nymphs +37°C. Parker, 1930
 - Adults can survive several weeks at +38°C. Parker, 1930

saskatchewan.ca

Figure: Kristen Panfilio 2008 Developmental Biology 313(2):471-91

Moisture, Temperature and Disease

- Fungal pathogens
 - Beauveria bassiana
 - Mortality increases with elevated RH
 - Marcandier and Khachatourians 1987. The Canadian Entomologist 119.10 901-907)
 - Basking increases internal temp to 38-42°C, reduces infection by half
 - Inglis, Johnson, and Goettel 1996 Biological Control 7, 131-139)

A *Melanoplus* grasshopper killed by the *Beauveria bassiana* fungus.

Moisture, Temperature and Disease

- Fungal pathogens
 - Entomophthora grylii
 - Grasshopper outbreaks 1930's, late 1940's and early 1960's terminated by cool, wet weather and outbreaks of *E. grylli*

Natural Enemies

Field cricket with nematomorph

Mermis nigrescens

Servies, Tarn

Natural Enemies

Tangleveined fly, *Neorhynchocephalus sackenii* Wind-distributed larvae attack mature nymphs

saskatchewan.ca

Scelio sp. Egg parasitoid

Formica sanguinia: Slave-making ants of fusca and neogagates species groups

Migratory behaviour

- Migratory grasshopper
 - Flight

- Some are short-distance, some long-distance flyers
- Interpopulation differences in proportions
 - Heritable response to regional semi-arid conditions and patchy distribution of resources
- Sustained flights longer than 10 hours documented*
 - Flight speeds 16-20 km/hr
 - No known upper limit for flight duration
 - Reach heights where transport by wind currents occurs
- Capable of flight at night but typically roost
- Mass migration
 - Common in *M. sanguinipes,* even in non-outbreak populations
 - Generally, 25-50 km/day

Migratory behaviour

- Migratory grasshopper
 - Mass migration

- Common in *M. sanguinipes*, even in non-outbreak populations
 - Movement of large numbers from 260-925 km documented
- Spectacular mass flights 1938, 1939, and 1940
 - Average of 106 km/day
 - Also, mass ground dispersal of nymphs

FIGURE 1.—Main migration routes and areas of heaviest egg laying by mexicanus in 1938 and 1939.

Parker, J. R., Newton, R. C., & Shotwell, R. L. (1955). *Observations on mass flights and other activities of the migratory grasshopper* (No. 1109). US Department of Agriculture.

Animal and Plant Health Inspection Service

PLANT PROTECTION AND QUARANTINE 2024 Rangeland Grasshopper Hazard

Control products (consult product labels)

- Adults and mature nymphs
 - Coragen/Coragen MaX chlorantraniliprole
 - Cygon 480-Ag, Lagon 480E, Diamante 4 dimethoate
 - Eco Bran carbaryl
 - Malathion 85E
 - Nolo Bait* spores of Nosema (Paranosema) locustae
 - Sevil XLR carbaryl
- Nymphs
 - UP-Cyde 2.5 EC, Ship 250 EC Cypermethrin
 - Decis 100 EC, Poleci 2.5 EC, Advantage Deltamethrin 5 EC Deltamethrin
 - Silencer 120 EC, Zivata, Labamba, Matador lambda-cyhalothrin*

Thresholds

• Always look for damage

Crop	Grasshopper stage	Threshold in field	Threshold in ditch
Cereals/Most crops	Nymphs	30-45/m2	50-75/m2
	5 th instar and adult	10-12/m2	21-40/m2
Canola/Soybean	Nymphs	30-45/m2	50-75/m2
	5 th instar and adult	12-14/m2	24-50/m2
Lentil in flower/Flax in boll	Nymphs	6-9/m2	unknown
	5 th instar and adult	2/m2	unknown
Range/pasture	Nymphs	45-60m2	unknown
	5 th instar and adult	15-20/m2	unknown

Acknowledgments

- Association of Alberta Ag Fieldmen
- SCIC Adjusters and Summer Students
- Dr. Meghan Vankosky (AAFC)
- Shelley Barkley (AB Agriculture and Forestry)

Questions?

